
3.1 Fundamentals of algorithms

Page 1 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

3.1.3 Searching algorithms 2

Lesson plan and printable activities

Teacher notes

Lesson 2 PowerPoint contains information on how to follow the binary search (slides 11–19).

Depending on the pace of learning during the earlier slides, it may be necessary to complete

this section in a second lesson.

Materials needed

1. 3.1.3 Lesson 2 PowerPoint.

2. Binary search analysis Quiz.

3. Printable versions of slides 12–14.

Lesson aims

1. To get students to think about the mechanism of the binary search algorithm and to realise that

there are differences in the efficiency of different searching algorithms.

Lesson objectives

1. Understand and explain how the binary search algorithm works.

2. Compare and contrast linear and binary search algorithms.

Starter activity (5 minutes)

1. Slide 2: Start with a short revision discussion that makes students think once more about the

potential size of datasets that must be searched.

Main activities (40 minutes without extension task)

1. Slide 5: Definition of binary search.

2. Slide 6: Explain that the binary search algorithm is more complex to follow than a conventional

linear search.

3.1 Fundamentals of algorithms

Page 2 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

3. Slide 7: YouTube video. Watch from 3:12 minutes to 6:31 minutes.

4. Slide 8: Show students an example of a binary search algorithm. This is the same algorithm

used in the extension task.

5. Slide 9: Comparing linear and binary searches.

Plenary activity (20 minutes)

1. Slide 10: BBC Bitesize activity.

Students recap the information from this lesson and the previous one with this activity from

BBC Bitesize: bbc.co.uk/education/guides/zgr2mp3/revision/2

Extension task (Slides 11–19

 Explain that you will be showing how a search term can be located within a 21-member

array of data.

 Explain that a pre-requisite for using the binary search is that the dataset must be sorted,

eg by ascending numerical order or by alphabetical order.

 Go through the example step-by-step, it is suggested that students are given a copy of the

dry-running trace table provided and that they should come up with the variable values

themselves. This can be tricky for many students but it’s essential practice for other areas

of the specification eg programming.

 Make it clear that the scope of the search ‘area’ diminishes with each iteration of the

algorithm’s loop.

http://www.bbc.co.uk/education/guides/zgr2mp3/revision/2%0c

3.1 Fundamentals of algorithms

Page 3 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

Lesson

3.1 Fundamentals of algorithms

Page 4 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

3.1 Fundamentals of algorithms

Page 5 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

3.1 Fundamentals of algorithms

Page 6 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

Quiz – Binary search analysis

Question 1

Here is an array of sorted numerical data that is to be searched until the term ‘78’ is located. How many times does the loop get entered before the
search term is found? Show your working as well as the final answer.

Note: Not all the loops provided in the table may be needed.

Algorithm
Store SearchTerm
StartPointer <- 1
EndPointer <- DataSetSize
Do
 MidPointer <- (StartPointer + EndPointer) / 2 (Rounded down if needed)
 If Record[MidPointer] < SearchTerm Then
 StartPointer <- MidPointer + 1
 End If
 If Record[MidPointer] > SearchTerm Then
 EndPointer <- MidPointer – 1
 End If
Until Record[MidPointer] = SearchTerm OR StartPointer = EndPointer

Array contents

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

23 35 67 78 99 101 102 109 123 145 178 179 200 201 202

Trace table

StartPointer EndPointer MidPointer

Record[MidPointer] <
SearchTerm

Record[MidPointer] >
SearchTerm

Record[MidPointer] = SearchTerm
OR StartPointer = EndPointer

Initial

Loop #1

Loop #2

Loop #3

Loop #4

3.1 Fundamentals of algorithms

Page 7 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

Quiz – Binary search analysis – answers

Question 1

Correctly identifies 15 elements and labels.
Correct values on each line for Loops only StartPointer and EndPointer and MidPointer.
States that the loop was entered twice.

Algorithm
Store SearchTerm
StartPointer <- 1
EndPointer <- DataSetSize
Do
 MidPointer <- (StartPointer + EndPointer) / 2 (Rounded down if needed)
 If Record[MidPointer] < SearchTerm Then
 StartPointer <- MidPointer + 1
 End If
 If Record[MidPointer] > SearchTerm Then
 EndPointer <- MidPointer – 1
 End If
 Until Record[MidPointer] = SearchTerm OR StartPointer = EndPointer

Array contents

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

23 35 67 78 99 101 102 109 123 145 178 179 200 201 202

Trace table – [DataSetSize = 15, SearchTerm = 78]

 StartPointer EndPointer MidPointer
Record[MidPointer] <
SearchTerm

Record[MidPointer] >
SearchTerm

Record[MidPointer] = SearchTerm
OR StartPointer = EndPointer

Initial 1 15

Loop #1 7 8 109 > 78

Loop #2 4
Record[MidPointer] =
SearchTerm

3.1 Fundamentals of algorithms

Page 8 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

Extension task

Binary search algorithm

Store SearchTerm
StartPointer <- 1
EndPointer <- DataSetSize
Do
 MidPointer <- (StartPointer + EndPointer) / 2 (Rounded down if needed)

 If Record[MidPointer] < SearchTerm Then
 StartPointer <- MidPointer + 1
 End If
 If Record[MidPointer] > SearchTerm Then
 EndPointer <- MidPointer – 1
 End If
Until Record[MidPointer] = SearchTerm OR StartPointer = EndPointer

Data area covered during each loop

Position [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21]

Loop #1 0 3 4 5 7 8 9 11 15 17 18 19 26 29 43 45 47 49 67 78 99

Loop #2 0 3 4 5 7 8 9 11 15 17 18 19 26 29 43 45 47 49 67 78 99

Loop #3 0 3 4 5 7 8 9 11 15 17 18 19 26 29 43 45 47 49 67 78 99

Loop #4 0 3 4 5 7 8 9 11 15 17 18 19 26 29 43 45 47 49 67 78 99

Loop #5 0 3 4 5 7 8 9 11 15 17 18 19 26 29 43 45 47 49 67 78 99

3.1 Fundamentals of algorithms

Page 9 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

Trace table

DataSetSize SearchTerm StartPointer EndPointer MidPointer
Record[MidPointer]
< SearchTerm

Record[MidPointer]
> SearchTerm

[END]
Record[MidPointer]
= SearchTerm OR
StartPointer =
EndPointer

Fixed 21

Input 43

Initial 1 21

Loop #1 12
(1 + 21 = 22)/2 =
11

18 < 43

Loop #2 15
(12 + 21 = 33)/2
= 16*

 45 > 43

Loop #3 14
(12 + 15 = 27)/2
= 13*

26 < 43

Loop #4 15
(14 + 15 = 27)/2
= 14*

29 < 43

Loop #5
(15 + 15 = 30)/ 2
= 15*

Met!

Record[MidPointer]
= SearchTerm

* = Rounded down

