AQAH

Realising potential 3.1 Fundamentals of algorithms
3.1.3 Searching algorithms 2

Lesson plan and printable activities

Teacher notes

Lesson 2 PowerPoint contains information on how to follow the binary search (slides 11-19).
Depending on the pace of learning during the earlier slides, it may be necessary to complete
this section in a second lesson.

Materials needed

1. 3.1.3 Lesson 2 PowerPaint.
2. Binary search analysis Quiz.

3. Printable versions of slides 12-14.

Lesson aims

1. To get students to think about the mechanism of the binary search algorithm and to realise that
there are differences in the efficiency of different searching algorithms.

Lesson objectives

1. Understand and explain how the binary search algorithm works.

2. Compare and contrast linear and binary search algorithms.

Starter activity (5 minutes)

1. Slide 2: Start with a short revision discussion that makes students think once more about the
potential size of datasets that must be searched.

Main activities (40 minutes without extension task)

1. Slide 5: Definition of binary search.

2. Slide 6: Explain that the binary search algorithm is more complex to follow than a conventional
linear search.

Page 1 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

3.1 Fundamentals of algorithms

3. Slide 7: YouTube video. Watch from 3:12 minutes to 6:31 minutes.

4. Slide 8: Show students an example of a binary search algorithm. This is the same algorithm
used in the extension task.

5. Slide 9: Comparing linear and binary searches.

Plenary activity (20 minutes)

1. Slide 10: BBC Bitesize activity.

Students recap the information from this lesson and the previous one with this activity from
BBC Bitesize: bbc.co.uk/education/quides/zgr2mp3/revision/2

Extension task (Slides 11-19

e Explain that you will be showing how a search term can be located within a 21-member
array of data.

e Explain that a pre-requisite for using the binary search is that the dataset must be sorted,
eg by ascending numerical order or by alphabetical order.

e Go through the example step-by-step, it is suggested that students are given a copy of the
dry-running trace table provided and that they should come up with the variable values
themselves. This can be tricky for many students but it's essential practice for other areas
of the specification eg programming.

e Make it clear that the scope of the search ‘area’ diminishes with each iteration of the
algorithm’s loop.

Page 2 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

http://www.bbc.co.uk/education/guides/zgr2mp3/revision/2%0c

Lesson

3.1 Fundamentals of algorithms

3.3 Fundamentals of data representation

3.1.3 Searching algorithms 2
Lesson

Think about this_ .

A software company is asked to create a
program for searching through a database of
maobile-phone records for everyone owning a
phone in the UK so that any individual's number
can be retrieved.

How many records might need to be searched
through?

AQATE

Objectives

Understand and explain how the
binary search algorithm works

Compare and contrast linear and
binary search algorithms

Introduction to binary searching

We looked previously at performing a linear
search and saw that it can be inefficient.

A more efficient algorithm is the binary search.

Definition of a binary search

A method for searching data that splits datasets
into two components repeatedly until the search
term is located.

What is a dataset?
A collection of data, e.g. a table in a database.

Why do we use the word binary?
Binary implies two states — here we talk about
splitting a dataset into two.

Before we can start...

A binary search can only work with an ordered
list.

An ordered list is one where the fields are sorted
in a preferred order, e.g. by numerical or
alphabetical order.

Besides the list being sorted, we will also need
to know its size to enable us to identify the
middle of the list.

Page 3 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

3.1 Fundamentals of algorithms

Watch this video

youtube com/watch?v=JQhciTuD3E8&nohtmi5=False

Binary search algorithm

Store SearchTerm
StartPointer <- 1
EndPointer <- DataSetSize
Do
MidPointer <- (StartPointer + EndPointer) / 2 (round answer
down)
If Record[MidPointer] < SearchTerm Then
StartPointer <- MidPointer + 1
End If
If Record[MidPointer] > SearchTerm Then
EndPointer <- MidPointer — 1
End If
Until Record[MidPointer] = SearchTerm OR StartPointer =
EndPointer

Comparing linear and binary searches

Alinear search has an algorithm that is easier
to understand, whereas the binary search
algorithm is more complex.

The binary search will be much quicker than a
linear search — particularly where the volume of
data being searched is large.

To round things off...

Recap with BBC Bitesize:
bbe.co.uk/education/guides/zgr2mp3/revision/2

The ordered list...

The ordered list we are going to search is shown
below:

- Position of item in list

[11 | [2] | [31 | [41 | [5] | [8] | (71| [81| [®] |[100| [14] | [12] | [131 | [14] | [15] | (16] (471 | [18] | [13] |[20] | [21]

0|3 (45789111517 (18|19 26|29 |43 45|47 |49 67 (78|99

Value of item [4]

Binary search algorithm

Store SearchTerm
StartPointer <- 1
EndPointer <- DataSetSize
Do
MidPointer <- (StartPointer + EndPointer) / 2 (round answer
down)
If Record[MidPointer] < SearchTerm Then
StartPointer <- MidPointer + 1
End If
If Record[MidPointer] > SearchTerm Then
EndPointer <- MidPointer — 1
End If
Until Record[MidPointer] = SearchTerm OR StartPointer =
EndPointer

Page 4 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

3.1 Fundamentals of algorithms

Data area covered during each loop

Trace table

< SaaroliTerm > SaaronTorm
Pesition | [1] | 21 | [3] |[4] | [| (51 | (70 | [0 | (80 | D) (O] (C°2) | (98] (O] | DS | 006 (07 [(180 | (19] | [20] |21)
Oniy one of these condiions should be met for each ikerafion.
Loop# (0 (2 |4 |5 |7 [& (9@ (1|15 |17 |13 (10 |26 |20 |43 |45 |47 |40 |67 |78 |90 Tea | 21
loop#2 (0 (3 |4 |5 |7 [8 (9 (1 |15|17 |13 (18 |28 |20 |43 |45 |47 |40 |67 |78 |o@ et =
Inttial 1 A
Loop#® [0 (2 |4 |5 (7 |8 |8 |11[15(17 |18 [10 |26 |28 |43 |45 |47 |40 [e7 |78 |e2 —r = [P
Loop#d |0 (2 |4 [5 |7 [2 |2 [#1|15]17 [1a |10 |28 |20 |43 |45 [47 |40 |e7 |78 |e@ Loz 5 g'ﬁ;f‘“;_ 25243
Loop#5 (0 (2 |4 [5 (7 |8 [0 [11]16(17 |18 |10 |26 (20 |43 |46 [47 |40 |e7 |78 [ee Loont i [R
(14415
Loon4 15 ':r:'.-z-u' 29<43
(15415= !
2
Leap & ¥ RecorMdPointr]=
-1 SearchTerm

Following the binary search algorithm 1

Loop #1—[On entering loop, StartPointer = 1, EndPointer = 21,
Search term = 43]

Midpoint <- Cell [11] = 18
Condition now met has requirement = Change StartPointer

Start point <- 12

Following the binary search algorithm 2

Loop #2
Midpoint <- Cell [16] =45
Condition now met has requirement = Change EndPointer

End point <- 15

[| (21| (31 | [41 ([5] | [6] | [71| [81| [9] ([10] | [19] | [42] | [13] | [14] | [15] | [16] | [17] | [18] | [19] | [20] | [21]

[2] | [3] | 41| [51 | [6] |[7] | [81 | [51| D101 | [11] | [20 | [43] | [14]| [15] | [1€] | [17] | [18] | [19] | [20] | [21]

O3|4(8(7|8|9|1[15(17 |18 (10|26 |20 (43 |45 |47 | 49 (67 |78 | 09

3|(4|5|T|8 |9 |1M|15[17|18 |19 |26 | 29| 43 |45 | 47 |40 (67 |78 | 99

Following the binary search algorithm 3

Loop #3
Midpaint <- Cell [13] = 26
Condition has now met requirement = Change StartPointer

Start point <- 14

Following the binary search algorithm 4

Loop #4
Midpoint <- Cell [14] = 29
Condition has now met requirement = Change StartPointer

Start point <=- 15

11| (21| (31 | [41 [[5] | (6] | [71| [81| [91 1100 | [11] [[42] | [13] | [14] | [15]| [161 | [17] | [18] | [191) [20] | [21]

[2] | [31 | 41| [51 | [61 |[7] | [81 | [91 | [101| (141 | (120 | [13] [441 | [15] | [1€] | [17] | [181 | [19] | [20] | [21]

O3|4(8(7 |89 |1[15(17 |18 (10|26 |20 (43 |45 (47 | 49 (67 | 78 | 09

3|4|5|T|8 |9 |1M|15[17|18 |19 |26 [28| 43 | 45 | 47 |49 | 67 |78 | 99

Following the binary search algorithm 5

Loop #5
Midpoint <- Cell [15] = 43
Condition met = Search term matched

Exit program!

[11|[21| [31 | [41 [[5] | [61 | [7] | [81 | [S] | [10] | (911 | [12] | [131 | [14] | (151 | [161 | [17] | [18] | [19] | [20] | [21]

O3|4(5(7 |89 |1M|15[17 |18 |19 |26 (20 |43 | 45 | 47 | 40 (67 |78 |99

Page 5 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

3.1 Fundamentals of algorithms
Quiz — Binary search analysis

Question 1

Here is an array of sorted numerical data that is to be searched until the term 78’ is located. How many times does the loop get entered before the
search term is found? Show your working as well as the final answer.

Note: Not all the loops provided in the table may be needed.

Algorithm
Store SearchTerm
StartPointer <- 1
EndPointer <- DataSetSize
Do
MidPointer <- (StartPointer + EndPointer) / 2 (Rounded down if needed)
If Record[MidPointer] < SearchTerm Then
StartPointer <- MidPointer + 1
End If
If Record[MidPointer] > SearchTerm Then
EndPointer <- MidPointer — 1
End If
Until Record[MidPointer] = SearchTerm OR StartPointer = EndPointer

Array contents

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
23 35 67 78 99 101 102 109 123 145 178 179 200 201 202
Trace table
strpoimer | Enapomter | wigpomer | BecordlUidRoiner) < | RecordluicPointr] > | Recoraliaronten - semcntenn
Initial
Loop #1
Loop #2
Loop #3
Loop #4

Page 6 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

3.1 Fundamentals of algorithms
Quiz — Binary search analysis — answers

Question 1

Correctly identifies 15 elements and labels.
Correct values on each line for Loops only StartPointer and EndPointer and MidPointer.
States that the loop was entered twice.

Algorithm
Store SearchTerm
StartPointer <- 1
EndPointer <- DataSetSize
Do
MidPointer <- (StartPointer + EndPointer) / 2 (Rounded down if needed)
If Record[MidPointer] < SearchTerm Then
StartPointer <- MidPointer + 1
End If
If Record[MidPointer] > SearchTerm Then
EndPointer <- MidPointer — 1
End If
Until Record[MidPointer] = SearchTerm OR StartPointer = EndPointer

Array contents

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

23 35 67 78 99 101 102 109 123 145 178 179 200 201 202

Trace table — [DataSetSize = 15, SearchTerm = 78]

:]]] Record[MidPointer] < Record[MidPointer] > Record[MidPointer] = SearchTerm
el BilPeiEy A Pl SearchTerm SearchTerm OR StartPointer = EndPointer
Initial 1 15
Loop #1 7 8 109 > 78
Record[MidPointer] =
Loop #2 4 SearchTerm

Page 7 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

3.1 Fundamentals of algorithms
Extension task

Binary search algorithm

Store SearchTerm
StartPointer <- 1
EndPointer <- DataSetSize
Do
MidPointer <- (StartPointer + EndPointer) / 2 (Rounded down if needed)
If Record[MidPointer] < SearchTerm Then
StartPointer <- MidPointer + 1
End If
If Record[MidPointer] > SearchTerm Then
EndPointer <- MidPointer — 1
End If
Until Record[MidPointer] = SearchTerm OR StartPointer = EndPointer

Data area covered during each loop

Position | [1] | [2] |[3] |[4] |[S] |[6] |[7] |[8] |[9] |[10] |[11] |([12] | [13] |[14] | [15] | [16] | [17] | [18] | [19] | [20] | [21]

Loop #1 0 3 4 5 7 8 9 11 |15 |17 |18 |19 |26 |29 |43 |45 |47 |49 |67 |78 |99

Loop #2 0 3 4 5 7 8 9 11 |15 |17 |18 |19 |26 |29 |43 |45 |47 |49 |67 |78 |99

Loop #3 0 3 4 5 7 8 9 11 |15 |17 |18 |19 |26 |29 |43 |45 |47 |49 |67 |78 |99

Loop#4 | O 3 4 5 7 8 9 11 |15 |17 |18 |19 |26 |29 |43 |45 |47 |49 |67 |78 |99

Loop #5 0 3 4 5 7 8 9 11 |15 |17 |18 |19 |26 |29 |43 |45 |47 |49 |67 |78 |99

Page 8 of 9 non-confidential
© 2016 AQA. Created by Teachit for AQA

Trace table

3.1 Fundamentals of algorithms

Record[MidPointer]

Record[MidPaointer]

[END]
Record[MidPaointer]

DataSetSize | SearchTerm | StartPointer | EndPointer MidPointer = SearchTerm OR
< SearchTerm > SearchTerm . _

StartPointer =
EndPointer

Fixed 21

Input 43

Initial 1 21

Loop #1 12 (hr21=222= 1 18<43

Loop #3 14 (=1§34; 15=27)2 | 56 . 43

Loop #4 15 Qe 197202 1 a9<a3
Met!

(15 +15=30)/ 2

HEeLD =15* Record[MidPointer]
= SearchTerm
* = Rounded down

Page 9 of 9 non-confidential

© 2016 AQA. Created by Teachit for AQA

